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Optimal incentives to early exercise of public-private

partnership investments under constrained growth

1 Introduction

Large scale infrastructure investments have been increasingly promoted via Public-Private

Partnerships (PPP) under a variety of arrangements. Those arrangements define the risk

and return transferred from the public to the private sector. A correct valuation of the

contractual arrangements is crucial for the bidding and negotiation of the PPP. Frequently,

these projects are “out-the-money” and need investment incentives to be implemented.

Some of these incentives are granted in the form of “contingent claims” or real options.

This paper studies the incentives which may be needed in an airport investment when

the government seeks immediate investment. Under uncertainty of future cash flows, there

is an incentive to delay investment (McDonald and Siegel 1986). The optimal threshold for

investment occurs later than the traditional Net Present Value (NPV) rule suggests. Even

when the NPV is positive, delaying investment may be optimal. The incentives given by

the government, that grants the PPP concession, cannot ignore the effect of the option to

defer, otherwise an insufficient incentive could delay investment, even after the concession

is granted.

PPP, and their incentives, with real options features have been studied previously in

the literature. PPP arrangements in infrastructure projects, and their risks, are discussed

by Grimsey and Lewis (2002). In the present paper we focus on the revenue risk, but

other sources of risk can be considered at the cost of a more complex model.

Alonso-Conde, Brown and Rojo-Suarez (2007) study the Melbourne CityLink Project

PPP conditions, treated as real options, and how these options affect the incentive to

invest. The value transferred from the public to the private sector, through government

guarantees, is analyzed. The options valued are the private concessionaire option to defer

the payments and the State option to cancel the concession. They show that, although

the guarantees provided an investment incentive, the State has transferred considerable

value to the private sector.

Different subsidies, guarantees and other incentives in PPP infrastructure projects

have been previously studied by Cheah and Liu (2006) and Chiara, Garvin and Vecer

(2007). Their focus is on the demand guarantee, which enhance project value. Mason

and Baldwin (1988) discuss the case of a loan guarantee, and how the operating options

influences both the value of the project, as well as the value guarantee.

Debt guarantee, provided by the government, reduces the cost of capital and raises the

project value. This type of incentive is valued by Ho and Liu (2002), who model a PPP

with value and investment costs behaving stochastically, accounting for the bankrupcy
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risk.

Moel and Tufano (2000) study the bidding terms of a copper mine privatization, where

the probability of investment was preferred to the cash proceeds from the privatization.

They suggest that, reducing the committed investment (exercise price), while reducing the

option premium, induces more investment.

The real options embedded in airport projects have been studied by Smit (2003) com-

bining real options and game theory to value airport expansion investments. Pereira,

Rodrigues and Armada (2007) model an airport investment when the revenues and the

number of passengers behave stochastically and negative or positive jumps occur ran-

domly. Gil (2007) present a description of a wide range of real options embedded in

airport investments.

In this paper, we focus on the incentives that can be given by the government in order

to induce earlier investment on large scale infrastructures, i.e. , to induce investment in

a moment when it is not yet optimal for a private concessionaire to exercise its option to

invest.

In fact, under the government public welfare perspective, it can be optimal to start

immediately the construction of an infrastructure. However, this may not be in accordance

with the private value maximization perspective.

In such a context, a PPP can arise and the government can give the private concession-

aire some incentives, in order to make the immediately investment an optimal decision.

Technically, the incentive must compensate the private company for losing the option the

postpone the project implementation (the so-called option to defer), becoming optimal the

decision to invest now. We show how investment subsidies, revenue subsidies a a minimum

number of passengers guaranty can be optimally established, and how they have different

impacts on the project value.

A significant number of previous real options models (e.g.: McDonald and Siegel (1986))

have assumed that there is a “return shortfall” perpetually. On the other hand, most of

them have assumed that the firm has an option to “buy” a project for a constant cost,

lower than the its value. We propose a different approach, that we believe is more realistic.

We assume that the constant investment cost can only produce a positive NPV until a

certain “capacity” or demand level, after which the investment needed is, at least, equal

to the value of the project. This is also the case when there are constrains to the project

growth, such as the limits imposed to airport expansion. Note that this is equivalent to

assume that after that level, for a firm holding a perpetual option to invest, the expected

growth of the project value equals, or is greater than, the its expected equilibrium rate of

return.

In such a constrained growth model, we show that, although the trigger value that

induces investment is the same, when it occurs before the maximum capacity/growth

level, the value of the investment opportunity is lower. We also show that investment may
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be only optimal after demand is above that level and how it is still optimal to invest, even

installing a lower capacity than current demand.

This paper unfolds as follows. Section 2 derives the value of the project, the value

option to invest and its optimal timing, without incentives under constrained growth. In

Section 3 several types of incentives are analyzed, and we present a comparison of the

immediate and future cash flows of the different incentives. Section 4 concludes the paper.

2 The value of a project with constrained growth

Let P be the number of passengers demanding a destination under the following stochastic

process:

dP = αPdt + σPdz (1)

where α is the (expected) growth rate of the number of passengers, σ the standard devi-

ation, dz an increment of a Wiener process.

Each passenger produces a net revenue R, that is assumed to be constant.

Building an airport can take several years, and the decision of choosing the appropriate

capacity is an important aspect in this type of projects. We assume that investing in scale

will only add value up to a certain level (C) – the maximum infrastructure capacity – after

which any additional investment will have a zero NPV1. Furthermore, we assume that the

present value of the investment costs is:

I = K + kC (2)

where K and k are, respectively, the fixed investment cost and the variable investment

cost per passenger, and C the maximum capacity level. We assume that I is totally sunk

once spent.

The equivalent risk-adjusted process of equation 1 is:

dP = (r − δ)Pdt + σPdz (3)

where δ = µ−α and µ is the equilibrium rate of return. Although the stochastic variable

is not a traded asset, a general equilibrium model (e.g.: CAPM) can be used to compute

the risk premium (λ) as if it was traded, provided that a stochastic variable time-series

(number of passengers) is available. The equilibrium rate of return is:

1In other words, we are assuming that there is no option to expand the project beyond its maximum
capacity level.
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µ = r + λσ (4)

with λ = ρPM

rM − r

σM

. ρPM is the correlation between the variations of the number of

passengers and the market and
rM − r

σM

the market price of risk.

Using the standard procedures, we have the non-homogeneous ordinary differential

equation that must be followed by the project value, V (P ), immediately after investing:

1

2
σ2P 2 ∂2V

∂P 2
+ (r − δ)P

∂V

∂P
− rV + π (P ) = 0 (5)

where π (P ) = R min (P, C).

Given π (P ), we have two possible solutions for equation 15. In the region where P < C

(and so: π (P ) = RP ), the general solution takes the form:

V (P ) = A1P
β1 + A2P

β2 +
RPe−δn

δ
(6)

where A1 and A2 are constants to be determined, the third right-hand side term corre-

sponds to a particular solution for the differential equation, and n represents the number

of years for the construction. Additionally, β1 and β2 are as follows:

β1 =
1

2
−

r − δ

σ2
+

√

(

−
1

2
+

r − δ

σ2

)2

+
2r

σ2
> 1 (7)

β2 =
1

2
−

r − δ

σ2
−

√

(

−
1

2
+

r − δ

σ2

)2

+
2r

σ2
< 0 (8)

Since V (P ) must tend to zero as P goes to zero (the airport has no value if there are

no passengers), and given that P β2 will tend to infinity as P approaches zero, the constant

A2 must be equal to zero.

In the region where P > C (and so π (P ) = RC), the general solution is:

V (P ) = B1P
β1 + B2P

β2 +
RCe−rn

r
(9)

where the constants B1 and B2 remain to be determined, the last term corresponds to a

particular solution for the differential equation, and β1 and β2 are as previously presented.

Due to the maximum capacity C, V (P ) must remain equal to the perpetuity
RCe−rn

r
,

even for large values of P . Noting that P β1 tends to infinity as P goes to infinity, B1 must

be equal to zero.

This leaves the following solution for V (P ):
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V (P ) =























A1P
β1 +

RPe−δn

δ
for P < C

B2P
β2 +

RCe−rn

r
for P > C

(10)

The two remaining constants (A1 and B2) are found using the value matching and

smooth pasting conditions at P = C2:

A1C
β1 +

RCe−δn

δ
= B2C

β2 +
RCe−rn

r
(11)

β1A1C
β1−1 +

Re−δn

δ
= β2B2C

β2−1 (12)

The solution to these two linear equations for the two unknowns is:

A1 =
C1−β1

β1 − β2
R

(

(β2 − 1) e−δn

δ
−

β2e
−rn

r

)

(13)

B2 =
C1−β2

β1 − β2
R

(

(β1 − 1) e−δn

δ
−

β1e
−rn

r

)

(14)

After determining the value of the project, we want to find the value of the option

to invest in this project. Its value-function, F (P ), has to satisfy the following differential

equation:

1

2
σ2P 2 ∂2V

∂P 2
+ (r − δ)P

∂V

∂P
− rV = 0 (15)

The general solution for the equation takes the form:

F (P ) = D1P
β1 + D2P

β2 (16)

The following boundary conditions are used to find the two unknowns, as well as the

optimal trigger value (P ∗), which corresponds to the value P at which it is optimal to

invest, starting the construction:

F (0) = 0 (17)

F (P ∗) = V (P ∗) − kC − K (18)

F ′(P ∗) = V ′(P ∗) (19)

The first condition implies D2 = 0; the other two conditions allow us to find D1 and

2At P = C the two functions must have the same value, and they must tangentially meet.
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P ∗. Note that, depending on the parameters, the trigger value can be in the P < C or in

the P > C regions.

For the first case (P ∗ < C), the solution is found with the following value-matching

and smooth-pasting conditions:

D1P
∗β1 = A1P

∗β1 +
RP ∗e−δn

δ
− kC − K (20)

β1D1P
∗β1−1 = β1A1P

∗β1−1 +
Re−δn

δ
(21)

These equations yields the following solution for the trigger value of P :

P ∗ =
β1

β1 − 1

δ (kC + K)

Re−δn
(22)

The value-function for the option to invest is, in turn, as follows:

F (P ) =















































A1P
β1 +

1

β1 − 1
(kC + K)

(

P

P ∗

)β1

for P < P ∗

A1P
β1 +

RPe−δn

δ
− kC − K for P ∗ 6 P < C

B2P
β2 +

RCe−rn

r
− kC − K for P > P ∗

∧ P > C

(23)

For the second case (P ∗ > C), the solution is found with the following value-matching

and smooth-pasting conditions:

D1P
∗β1 = B2P

∗β2 +
RCe−rn

r
− kC − K (24)

β1D1P
∗β1−1 = β2B2P

∗β2−1 (25)

P ∗, the trigger value of P , when it is greater than C, is:

P ∗ =

[

β1

B2 (β2 − β1)

(

RCe−rn

r
− kC − K

)]
1

β2

(26)

The value of the option to invest is, for P ∗ > C:

F (P ) =























β2

β2 − β1

(

RCe−rn

r
− kC − K

) (

P

P ∗

)β1

for P < P ∗

B2P
β2 +

RCe−rn

r
− kC − K for P > P ∗ > C

(27)
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Parameter Description Value

P Current number of passengers per year 15 million

α Expected growth rate of P 0.02

σ Standard deviation of P 0.08

R Current mean net revenue per passenger 5

r Risk-free interest rate 0.03

λ Risk premium 0.3

n Years of construction of the airport 7

K Airport fixed investment cost 800 million

k Airport variable investment cost 40

Table 1: Base-case parameters

It is well known that for real options without value growth constraints, like the one

we have imposed trough a limited ability to generate positive NPV after C, δ must be

positive, i.e. α < µ, otherwise investment will be delayed until the last available moment.

For perpetual options, as above, investment would never be optimal.

However, in our model, a different picture arises. The solution above is valid for δ > 0.

When δ is negative, i.e. , the expected drift of the number of passengers is greater than

its required rate of return, the project is allways delayed for P < C. The value of the

project, then becomes:

V (P ) =















G1P
β1 for P < C

H2P
β2 +

RCe−rn

r
for P > C

(28)

With these two equations, the two unknowns are:

G1 =
Re−nrβ2C

1−β1

r (β2 − β1)
(29)

H2 =
Re−nrβ1C

1−β2

r (β2 − β1)
(30)

The value of the option to invest (F (P )) and the trigger value (P ∗) are found substi-

tuting B2 for H2 in equations 27 and 26, respectively. Therefore, the option to invest is

given by:

F (P ) =























β2

β2 − β1

(

RCe−rn

r
− kC − K

) (

P

P ∗

)β1

for P < P ∗

H2P
β2 +

RCe−rn

r
− kC − K for P > P ∗ > C

(31)

7



3 Incentives to investment

Unless P > P ∗, investment will be delayed. If immediate investment is intended, several

incentives can be given. All of them must make the option to delay worthless (F (P ) =

V (P )), which implies, allways, a cost of F (P ) − V (P ).

We proceed now to quantify the amount of the incentive and when it is due.

3.1 Fixed investment subsidy

A common incentive is to subsidize investment. Let S be the subsidy needed to make

immediate investment optimal, i.e. to make P ∗ equal to P .

The subsidy amount, as a function of P , is:

S(P ) =



















































(kC + K) − P
β1 − 1

β1

Re−δn

δ
for P < C ∧ δ > 0

B2P
β2

β2 − β1

β1
+ kC + K −

RCe−rn

r
for P > C ∧ δ > 0

H2P
β2

β2 − β1

β1
+ kC + K −

RCe−rn

r
for δ < 0

(32)

Lowering P ∗ to P , demands S(P ) immediately, but also increases the value of the

project to:

F1 (P ) =























A1P
β1 +

1

β1 − 1
(kC + K − S (P )) for P < C ∧ δ > 0

β2

β2 − β1

(

RCe−rn

r
− kC − K + S (P )

)

for P > C ∨ δ < 0

(33)

The subsidy makes the investment opportunity worthier by an amount equal to A (P ) =

F1 (P ) − F (P ).

If the government pursues immediate investment, a subsidy of S (P ) must be given

to the concessionaire who, in turn, is willing to pay A (P ), additionally to F (P ) and

immediately, if that is intended. The net cost of this type of incentive is, therefore,

S (P ) − A (P ).

Figure 1 shows the results of a sensitivity analysis of the project value and the amount

of incentive as a function of the number of passengers, using the parameters from Table 1.

A higher number of passengers makes the project more valuable and reduces the value of

the option to defer, thus reducing the incentive needed to build immediately the airport.

From the government perspective, the maximum value that is expected to be received

from the concessionaire, net of the incentives cost, is exactly the NPV of the project. The
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Figure 1: Fixed investment subsidy - Number of passengers
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Figure 2: Fixed investment subsidy - Volatility

investment subsidy has, however, to be greater than the negative NPV to make investment

optimal. Part of the subsidy is recovered through a higher value of the project.

A similar analysis for the volatility is shown in Figure 2. As we are doing a static

comparative analysis, the risk premium (λ) and the expected growth rate (α) remain

constant, with the required rate of return (µ) adjusting to volatility. This produces a

negative relationship between uncertainty and both the NPV and the project value, while

the option to defer, that is the same as the incentives cost, is increasing with volatility.

The same occurs for the investment subsidy.

3.2 Revenue subsidy

Another incentive could be given in the form of a variable subsidy per passenger, increasing

the revenue from R to R + s (P ). s (P ) must be enough to make immediate investment

optimal, i.e. P ∗ = P :
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s(P ) =



















































































β1

β1 − 1

δ

e−δn

kC + K

P
− R for P < C ∧ δ > 0

(

B2P
β2

β2 − β1

β1
+ kC + K

)

−
RCe−rn

r

Ce−rn

r
−

B2

R
P β2

β2 − β1

β1

for P > C ∧ δ > 0

(

H2P
β2

β2 − β1

β1
+ kC + K

)

−
RCe−rn

r

Ce−rn

r
−

H2

R
P β2

β2 − β1

β1

for δ < 0

(34)

The present value of the subsidy is obtained replacing R by s(P ) in equation 10 when

δ is positive or in equation 28 when δ is negative.

With the revenue subsidy, the value of the project increases to:

F1 (P ) =























A′
1P

β1 +
1

β1 − 1
(kC + K) for P < C ∧ δ > 0

β2

β2 − β1

(

RCe−rn

r
− kC − K

)

for P > C ∨ δ < 0

(35)

where A′
1 is A1 in equation 13 with R replaced by R + s(P ).

The main differences between a revenue subsidy and an investment subsidy are the

moment when they occur and the amounts involved. While the net cost is the same (equal

to the value of the option to defer), an investment subsidy here is assumed to be paid

immediately and the revenue subsidy is assumed to be paid in the future. On the other

hand, the additional value that the concessionaire is willing to pay, is also different and

higher for the revenue subsidy case (Equations 33 and 35).3

Figure 3 shows that the revenue subsidy, per passenger, needs to increase up to infinity

as we move closer to zero passengers. Differently from the investment subsidy, the project

value, before the trigger value of P , is decreasing.

3.3 Guaranteed number of passengers

In public-private partnerships, the government guarantees, frequently, a minimum number

of passengers (P ): the concessionaire receives the revenue of every passenger and a subsidy

for the difference between the actual number of passengers, P , and P , whenever P < P .

Under these setting, the ordinary differential equation that V (P ) must satisfy is:

3Note that A′
1 > A1 and

β2

β2 − β1

is allways positive.
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1

2
σ2P 2 ∂2V

∂P 2
+ (r − δ)P

∂V

∂P
− rV + π (P ) = 0 (36)

where π (P ) = R max (P , min (P, C)).

We have now three possible solutions for equation 36, in the regions P 6 P , P < P < C

and P > C.

In the region where P 6 P (and, so: π (P ) = RP ), the general solution takes the form:

V (P ) = M1P
β1 + M2P

β2 +
RPe−rn

r
(37)

Since V (P ) must tend to zero as P goes to zero, the constant M2 must be equal to

zero.

In the region where P 6 P (and so π (P ) = RP ), the general solution takes the form:

V (P ) = N1P
β1 + N2P

β2 +
RPe−δn

δ
(38)

In the region where P > C (and so π (P ) = RC), the general solution is:

V (P ) = Q1P
β1 + Q2P

β2 +
RCe−rn

r
(39)

As with B1 above, Q1 must be set equal to zero.

This leaves the following solution for V (P ):

V (P ) =















































M1P
β1 +

RPe−rn

r
for P 6 P

N1P
β1 + N2P

β2 +
RPe−δn

δ
for P < P < C

Q2P
β2 +

RCe−rn

r
for P > C

(40)

The four unknown constants (M1, N1, N2 and Q2) are found using the value matching

and smooth pasting conditions at P = P and P = C.

M1 =
C1−β1 − P 1−β1

β1 − β2
R

(

(β2 − 1) e−δn

δ
−

β2e
−rn

r

)

(41)

N1 =
C1−β1

β1 − β2
R

(

(β2 − 1) e−δn

δ
−

β2e
−rn

r

)

(42)

N2 =
P 1−β2

β2 − β1
R

(

(β1 − 1) e−δn

δ
−

β1e
−rn

r

)

(43)

Q2 =
C1−β2 − P 1−β2

β1 − β2
R

(

(β1 − 1) e−δn

δ
−

β1e
−rn

r

)

(44)
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F (P ), has to satisfy the following differential equation:

1

2
σ2P 2 ∂2V

∂P 2
+ (r − δ)P

∂V

∂P
− rV = 0 (45)

The general solution, for this equation, takes the form:

F (P ) = S1P
β1 + S2P

β2 (46)

The following boundary conditions are used to find the two unknowns and trigger value

(P ∗):

F (0) = 0 (47)

F (P ∗) = V (P ∗) − kC − K (48)

F ′(P ∗) = V ′(P ∗) (49)

The first condition implies S2 = 0; the other two conditions allow us to find S1 and

P ∗. Note that, depending on the parameters, the trigger value can be in either the three

regions.

For the first region, P 6 P , investment is never optimal. As the revenues of P

passengers are guaranteed, the concessionaire, unless forced (which is the likely situation)

to operate when the number of passengers is below that level, will delay investment until

the number of passengers reaches P .4

For the second region, where P < P < C, and proceeding as before, the solution for

the trigger value of P is obtained solving the following nonlinear equation:

(β1 − β2)N2P
∗β2 + (β1 − 1) P ∗Re−δn

δ
− β1 (kC + K) = 0 (50)

The value of the option to invest is given as follows:

F (P ) =











































S1P
β1 for P < P ∗

N1P
β1 + N2P

β2 +
RPe−δn

δ
− kC − K for P ∗ 6 P < C

Q2P
β2 +

RCe−rn

r
− kC − K for P > P ∗

∧ P > C

(51)

For the third case (P ∗ > C), the solution is very similar to the solution without P .

The trigger value of P is given by equation 26, replacing B2 with Q2, i.e. :

4It is straightforward to show that smooth pasting between F (P ) and V (P ) is impossible.
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P ∗ =

[

β1

Q2 (β2 − β1)

(

RCe−rn

r
− kC − K

)]
1

β2

(52)

The value of the option to invest is, for P ∗ > C:

F (P ) =























β2

β2 − β1

(

RCe−rn

r
− kC − K

) (

P

P ∗

)β1

for P < P ∗

Q2P
β2 +

RCe−rn

r
− kC − K for P > P ∗ > C

(53)

Solution when δ is negative

As before, when the expected growth rate of the number of passengers is greater than

the required rate of return, the concessionaire is better off delaying operations until P

reaches C, which includes the region before P . However, when P < P it has at least a

value corresponding the the number of passangers guaranteed, i.e. : V (0) = RPe−rn

r
. The

value of the project, immediately after investment, is then given by:

V (P ) =



















T1P
β1 +

RPe−rn

r
for P < C

U2P
β2 +

RCe−rn

r
for P > C

(54)

At P = C these to value-functions meet tangently, given the following solution for T1

and U2:

T1 =
Re−nrβ2C

−β1 (C − P )

r (β2 − β1)
(55)

U2 =
Re−nrβ1C

−β2 (C − P )

r (β2 − β1)
(56)

The value of the option to invest (F (P )) and the trigger value (P ∗) are found substi-

tuting Q2 for U2 in equations 53 and 52, respectively.

The effect of changing P

Figure 4 (a) shows how NPV and the option to invest change as P increases. A higher

number of guaranteed passangers increases the NPV. That effect is, as expected, more

pronounced for lower values of P . As we approach the level above which the NPV stops

increasing (C), the probability of using the safeguard provided by the guaranty is lower

and, after a certain level is negligible.
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Figure 4: Changing the number of guaranteed passengers
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As we increase the level of P , investment is optimal for lower values of P , i.e. , P ∗

decreases with P (Figure 4 (b)). There is a threshold above which the option to invest

equals the NPV, making immediate investment optimal, regardless P . That occurs when

the NPV is allways positive, even for P = 0. The threshold is:

P ∗ =
r (kC + K)

Re−rn
(57)

Optimal incentive

Figure 5 (a) shows that the additional value, induced by a guaranteed level of passen-

gers, is lower than for the previous incentives, which means that incentives cost is closer

to the value of the option to defer. Figure 5 (b) shows how the optimal level of the guar-

anty must increases from zero (for P = P ∗) to the maximum level needed (P ∗) as the

investment is less “in-the-money”. A higher volatility increases the level of P needed.

3.4 Immediate vs future cash flows

We now compare the moment of the payment of the incentives and the net proceeds from

the incentives. Figure 6 shows the government cash flows induced by the incentives. The

investment subsidy is the only incentive, of those presented above, that is due immedi-

ately5. All the other types of incentives are due after concession is granted, with positive

cash flows, related with the additional project value, received immediately. The revenue

subsidy is the type of incentive that delays more the payments and anticipates more the

receipts, while the guaranty of a number of passengers generates a lower positive cash

flow immediately, which is compensated by a lower futures commitment. The degree of

government’s commitment to future generations of tax payers is likely to influence the

choice of the types of incentives.

4 Concluding remarks and future research

Building a large scale infrastructure involves large sunk costs which, as is suggested by

the real options literature, under uncertainty, produces an incentive to delay investment.

These projects have been frequently developed by public-private partnerships and usually

the government who grants the concession, seeks immediate investment. A correct valua-

tion of these incentives is crucial to promote the desired outcome and to avoid an excessive

value transfer to the private sector.

We quantify the optimal investment subsidy, revenue subsidy, and guaranteed number

of passengers that prompts immediate investment. Furthermore, we show that these type

5Actually, any incentive can be deferred or anticipated at the risk-free rate.
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Figure 5: Guaranteed number of passengers
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Figure 6: Immediate vs future cash flows
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of incentives are due in different amounts and moments, with the revenue subsidy being

more likely, when the government favors current to future tax payers.

This paper also extends previous real option models (e.g.: McDonald and Siegel (1986))

assuming that deviations from the equilibrium growth rate are only temporary. This is not

only more realistic but also allows for an early exercise incentive, even when the project

has a higher return than the equilibrium rate of return, in which case previous models

have suggested that investment is never optimal for perpetual options.

Several extensions can be made to this paper. Other options, as the expansion or

the bankruptcy options can be added to the model. Optimal capacity choice is another

important issue in large scale projects. Other assumptions about the stochastic behavior

of the two segments, namely mean-reverting processes, could be considered. Adding more

stochastic variables is also another feasible extension.
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